If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42-64y+24y^2=0
a = 24; b = -64; c = +42;
Δ = b2-4ac
Δ = -642-4·24·42
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-8}{2*24}=\frac{56}{48} =1+1/6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+8}{2*24}=\frac{72}{48} =1+1/2 $
| d+1.9=3.4 | | 12y-12=60 | | 6/x=18;x=0 | | 3x^2-7x-68=0 | | 4x-19=5x-15 | | 9x+12=+6x | | 9-7=7x+14 | | x^-⅔=81 | | 18x-35=23x-50 | | 2(j−15)−–7=11 | | 5÷3b=-2 | | 5÷3b=- | | 5(-w+6)+7w=-w-6 | | 8.x÷2=14 | | -6w=60 | | -6|w|=60 | | u-18=-11 | | -2|3x-6|+5=1 | | F(x)=-125 | | 10p=-p-2p | | -10=12-3m | | 12-x=13x | | 6.x+19=139 | | 8x+11=34 | | 4•(x-12)=264 | | 1x10^4=(.1+2x)^2/(.1-2x)^2 | | 5•z-35=200 | | 8m-14=22 | | 98-4x=-11 | | 3n=696 | | r+438=630 | | 532=14s |